
On Partitioning the Domain for Test Case Reusability

Yunwei Dong
Northwestern Polytechnic University

Xi’an, Shaanxi, CHINA
yunweidong@nwpu.edu.cn

M. F. Lau∗ and Si-yu Lin
Faculty of Information and Communication Technologies

Swinburne University of Technology
Hawthorn, Victoria, AUSTRALIA, 3122

{elau,slin}@swin.edu.au

Abstract
During the life time of software or even within the

development stage, it is inevitable that the software needs
to be modified. Test cases used before for the previous
version could be reused in order to reduce the cost of
regression testing. This paper proposes a regression
testing methodology, called Partitioning of Domain Testing
(PDT), to analyze the input domains of the previous
version and the modified version so that test cases can
be maximally reused. As a result, software test engineers
can spend less effort in generating test cases to test the
modified software. This methodology is different from
traditional domain-based testing strategies in the sense
that the partitioning is achieved by two supplementary
perspectives, namely the specifications of the program and
its testing criterion. First, the input domain is partitioned
according to the specification and testing criterion of the
program under test. Then, further refining methods are
introduced to obtain 100% reusable test cases. We also
illustrate the idea of PDT using a case study with 3
different testing criteria.

Keyword: Domain partitioning, specification-based test-
ing, test case reusability
1. Introduction

For having a longer software lifetime and a better
performance, software is always modified partly in
maintenance phase or optimized in development phase.
Many skills can be adopted. For example, we can replicate
branch codes in conditional as well as unconditional
branches so as to reduce the cost of comparing branch
constructs to be executed [6, 7]. We can also use
compilation tool to collect profile data to reorder
the sequences of conditional branches of program so
that the program executes faster [10]. In real-time
system, in order to avoid unnecessary computations
that occurred at different locations in a program, those

∗Corresponding author.

original computations will be computed once and the
subsequent computations could be replaced by variables
or registers [5]. In order to have smaller code
size of embedded programs, many conditions could
be merged together by eliminating logically redundant
conditions or avoiding further computations in conditional
statements. For shortening the frequently executed paths
or critical paths, a combined decision can be divided
into more simpler decisions, or sometimes a redundant
decision is inserted into the code so as to filter out
the key conditions [4]. Furthermore, in order to adapt
programs with good performance to new platforms, it
may be necessary to recode these programs using other
programming tools.

Regression testing is expensive. If test cases of the
original software can be maximally reused in testing the
modified version, the cost of regression testing can then
be further reduced. Input domain is one of the essential
attributes of program specifications, and it depends on
the functional specification of the program but not on a
particular implementation of the program. Test cases can
be generated according to testing criterion-based partition,
which divides the input-domain into “equivalence classes”
based on testing strategy and software specification.

The focus of this paper is on test case reusability.
We propose the partitioning of domain testing (PDT) for
achieving coverage-based testing criteria on one hand,
while maximizing the reusability of existing test cases.
The input domain is partitioned into specification-based
partition and a control-flow based partition based on the
control-flow based testing criterion. Test cases are then
selected to satisfy the control-flow based testing criteria to
reveal the program coverage.

The rest of this paper is organized as follows: Section 2
discusses related work. Section 3 discusses the definitions
of specification-based and various control-flow based
partitions. Section 4 presents our idea and results using
a case study on various versions of a program. Section 5
concludes the paper.

The Eighth International Conference on Quality Software

1550-6002/08 $25.00 © 2008 IEEE

DOI 10.1109/QSIC.2008.51

264

The Eighth International Conference on Quality Software

1550-6002/08 $25.00 © 2008 IEEE

DOI 10.1109/QSIC.2008.51

264

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on August 12,2010 at 07:34:29 UTC from IEEE Xplore.  Restrictions apply. 



2. Related Work
Many studies focus on reusing test cases of original

program for testing the modified program. Most of
them focus on comparing the program structure (for
example, the control-flow as well as the dataflow) of the
modified version with the original program. They evaluate
control-flow and dataflow coverage in testing to show the
effectiveness of test cases [3].

In regression testing, test cases from the original version
will be classified into obsolete test cases and non-obsolete
test cases, and only those non-obsolete test cases can be
reused to test the modified version. Non-obsolete test cases
need to be classified into modification-revealing test cases,
fault-revealing test cases and modification-traversing test
cases to evaluate their reusability. In [8], a regression
testing framework has been presented. It also introduced
many techniques to classify test cases according to the
control-flow between the old and new programs. The
framework shows that regression testing is carried out with
three assumptions which may restrict regression testing or
have less operability, and it is a difficult and expensive task.

Input domain can be used to evaluate test cases
reusability in regression testing. Domain based testing
method was introduced [9]. It relies on software
object modelling on three levels: scripting, individual
manipulation of object and objective attribute value
section. Though it facilitates reusing test cases in
regression testing, the actual selection of reusable test
cases is a complicated task.

There are many criteria to evaluate the reusability of
test cases, such as completeness, adequacy, or coverage of
test cases on source codes [1]. In this paper, we focus on
the control-flow coverage criteria such as branch coverage
(BC), condition/decision coverage (C/DC) and modified
condition/decision coverage (MC/DC). Interested reader
may refer to [2] for details of these coverage criteria.
Even though we illustrate our ideas using these three
coverage criteria, the methodology can also be applied to
other coverage criteria. When compared with previous
regression testing approach, our approach is easier and less
expensive to evaluate the reusability of test cases among
programs with similar specifications.

3. Partitioning of Domain Testing
The input domain of program is defined by its

specification, and it can be partitioned into sub-domains.
Variables, conditions and decisions of a program may
affect the partitioning of its input domain.
Definition 3.1 Let I be the input domain of a program,
S = {s1, . . . ,sn} be the set of input conditions of a program,
and P be a partition of input domain into m different
subdomains P1,P2, . . . ,Pm. P is a specification-based
partition (SP) if it satisfies the following conditions

1. Elements in P are mutually exclusive (that is, for any
two different Pi and Pj, Pi∩Pj = /0);

2. I = ∪m
i=1Pi;

3. For all Pi ∈ P, there exists s ∈ S such that s(x) = s(y)
for all x,y ∈ Pi;

4. For all s ∈ S, there exists Pi ∈ P such that s(x) = s(y)
for all x,y ∈ Pi; and

5. For all x ∈ Pi and all y ∈ Pj(i 6= j), there exists s ∈ S
such that s(x) 6= s(y)

The input conditions are derived from the specification
of the program. For example, if a program calculates
the square root of the product of two positive integers
x and y, one input condition may be “x ≥ 0 and y <
0.” Condition 3 in Definition 3.1 ensures that, for every
subdomain in P, there is an input condition in which
all inputs in that subdomain agree. Condition 4 ensures
that each input condition can be satisfied by a certain
subdomain. Condition 5 ensures that there is always an
input condition to distinguish one subdomain from another.

When test cases are generated from input domain of a
program to satisfy a control-flow based testing criterion
such as the C/DC criterion, we need to consider the
decisions and conditions in the program. Due to page
limitation, we formally define the specification-cum-C/DC
(S-C/DC) partition. The definitions of specification-cum-
branch (S-B) and specification-cum-MC/DC (S-MC/DC)
partitions are similar.
Definition 3.2 Let I be the input domain of a program
and P = {P1,P2, . . . ,Pm} be a specification-based partition
of the input domain I. Suppose further that C =
{c1, . . . ,cq} and D = {d1, . . . ,dr} are the sets of all
conditions and decisions in the program, respectively. A
partition PC = {PC,1, . . . ,PC,k} of the input domain I is
a specification-cum-C/DC-based (S-C/DC) partition if it
satisfies the following conditions

1. Elements in PC are mutually exclusive;
2. I = ∪k

i=1PC,i;1

3. For all PC,i ∈ PC, there exists d ∈ D such that d(x) =
d(y) for every x,y ∈ PC,i;

4. For every d ∈ D, there is PC,i ∈ PC such that d(x) =
d(y) for every x,y ∈ PC,i;

5. For all x∈ PC,i and all y∈ PC, j ( j 6= i), there is a d ∈D
such that d(x) 6= d(y);

6. For every PC,i, if there is a x ∈ PC,i ∩Pj for some j,
Pj ⊆ PC,i.

7. (Decision coverage) For every decision d ∈ D, there
exist PC,i and PC, j (i 6= j), if possible, such that d(x) 6=
d(y) for every x∈PC,i and y∈PC, j (that is, all possible
outcomes of every decision are covered)

1Please note that Since P is a SP, ∪m
i=1Pi = I = ∪k

i=1PC,i.

265265

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on August 12,2010 at 07:34:29 UTC from IEEE Xplore.  Restrictions apply. 



8. (Condition coverage) For every decision d ∈ D and
every condition c in d, there exist PC,i and PC, j (i 6= j),
if possible, such that c(x) 6= c(y) for every x ∈ PC,i
and y ∈ PC, j (that is, all possible outcomes of every
condition in a decision are covered)

In other words, a specification-cum-C/DC-based
(S-C/DC) partition is a partition of the input domain
based on the specification-based partition that it can
further satisfy the C/DC criterion. Conditions 1–5 in
Definition 3.2 are similar to those in Definition 3.1.
Condition 6 in Definition 3.2 ensures that the S-C/DC
partition can be formed by regrouping the subdomains
in SP (P) without subdividing them into smaller parts.
Conditions 7 and 8 in Definition 3.2 ensure that any test
set, generated by selecting one element from every PC,i,
satisfies the C/DC criterion.

4. Case Study
We now illustrate our methodology and results via a

case study. An optical application called FocalLength
is adopted as the subject program for the case study. It
calculates the focal length of a single lens based on 4 input
variables, namely, type of the lens (type), the radii of
curvatures of the two surfaces (r1 and r2) and direction
of the two surfaces (dir). The original source code of
FocalLength is referred to as Version 0 (or, simply
V0). We modified V0 to create three similar source codes
having different control-flow structures without changing
their specifications. These three newly created programs
are referred to as V1, V2 and V3.

The original program (V0) has 10 decisions, 12
conditions and 11 feasible paths. Program V1 is created
by combining several decisions in V0 to first check the
validity of input values before making further decisions
and removing the obsolete decisions afterwards. However,
the order in which the variables are being checked remains
the same as V0. It has 10 decisions, 15 conditions and 11
feasible paths. Program V2 is also created by combining
several decisions in V0 to first check the input values before
making further decisions. Furthermore, the order in which
the variables are being checked has been rearranged. After
such rearrangement, obsolete decisions are removed. It has
8 decisions, 11 conditions and 9 feasible paths. Program V3
is similar to V2 except that the checking of the input values
in some decisions are different from those in V2. It has 8
decisions, 11 conditions and 9 feasible paths.

4.1. Specification-based Partitioning
We first create the specification-based partition based on

the input conditions in the specification of FocalLength.
Based on the specification, we have

1. type: It is represented by an integer, indicating
whether it is a convex (represented by a ‘0’) or

concave (‘1’) lens. Hence, it has four different
possible input categories, namely 0, 1, (-∞,0) and (1,
+∞), which are identified as categories 1, 2, 3 and 4
of type, respectively.

2. r1 and r2: They are represented by positive real
numbers to indicate the radii of curvatures of the two
sides of the lens. Each has two different possible
input categories, namely, r1 (r2)≤ 0 and r1 (r2) > 0,
which are identified as categories 1 and 2 of r1 (r2).

3. dir: It is represented by an integer, indicating the
direction where the surfaces of the lens are facing.
They may be facing the same (‘0’) or opposing (‘1’)
directions. Hence, it has four different possible input
categories, namely 0, 1, (-∞,0) and (1, +∞). which
are identified as categories 1, 2, 3 and 4 of dir,
respectively.

4. R12: There are two additional possible input
categories related to r1 and r2 because the formula
used to calculate the focal length depends on whether
r1 ≥ r2 or r1 < r2 when r1, r2 > 0. They are
identified as categories 1 and 2 of R12 accordingly.

We then create the specification-based partition P of the
input domain of FocalLength as a collection of Pi, j,k,l,m
where i (= 1, 2, 3, 4), j (= 1, 2), k (= 1, 2), l (= 1, 2, 3,
4) and m (= 1, 2) are the input categories of type, r1, r2,
dir, and R12, respectively.

4.2. S-C/DC Partitioning
Since C/DC criteria relates to the program source,

we illustrate how to create the S-C/DC partition of
FocalLength using V0 as an example.

The original version V0 has 10 decisions and 12
conditions. Strictly speaking, there are altogther 24
different situations for satisfying C/DC. These decisions
and conditions are interrelated. For example, if Decision 2
(say, r1 ≤ 0 || r2 ≤ 0) falls within the TRUE branch
of Decision 1 (say, type == CONVEX), we can reduce all 6
possible situations of both Decisions 1 and 2 to 5. Hence,
these 24 situations can be further reduced to 15.

We then denote such a partition as PV0
C =

{PV0
C,1, . . . ,P

V0
C,15} where PV0

C,i is the subdomain
corresponding to the inputs that satisfy the i-th (out
of 15) possible situation for satisfying C/DC of V0.
Table 1 shows the relation between S-C/DC and
specification-based partitions. For example, for V0,
the subdomain PV0

C,7 consists of specification-based
subdomains P1223X and P1224X where X can be either
‘1’ or ‘2’. Another example is that V1 has 18 S-C/DC
subdomains and its S-C/DC subdomain PV1

C,7 consists of
specification-based subdomains P1224X where X can be
either ‘1’ or ‘2’.

266266

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on August 12,2010 at 07:34:29 UTC from IEEE Xplore.  Restrictions apply. 



Table 1: Relation between S-C/DC and specification-based partitions
V0 V1 V2 V3

PV
C,1 P3111X ,a P3112X , P3113X , P3114X ,

P3121X , P3122X , P3123X , P3124X ,
P3211X , P3212X , P3213X , P3214X ,
P3221X , P3222X , P3223X , P3224X ,
P4111X , P4112X , P4113X , P4114X ,
P4121X , P4122X , P4123X , P4124X ,
P4211X , P4212X , P4213X , P4214X ,
P4221X , P4222X , P4223X , P4224X

P4111X , P4112X , P4113X , P4114X ,
P4121X , P4122X , P4123X , P4124X ,
P4211X , P4212X , P4213X , P4214X ,
P4221X , P4222X , P4223X , P4224X

P1111X , P1112X , P1113X , P1114X ,
P2111X , P2112X , P2113X , P2114X ,
P3111X , P3112X , P3113X , P3114X ,
P4111X , P4112X , P4113X , P4114X

P1111X , P1112X , P1113X , P1114X ,
P2111X , P2112X , P2113X , P2114X ,
P3111X , P3112X , P3113X , P3114X ,
P4111X , P4112X , P4113X , P4114X

PV
C,2 P1121X , P1122X , P1123X , P1124X P3111X , P3112X , P3113X , P3114X ,

P3121X , P3122X , P3123X , P3124X ,
P3211X , P3212X , P3213X , P3214X ,
P3221X , P3222X , P3223X , P3224X

P1121X , P1122X , P1123X , P1124X ,
P2121X , P2122X , P2123X , P2124X ,
P3121X , P3122X , P3123X , P3124X ,
P4121X , P4122X , P4123X , P4124X

P1121X , P1122X , P1123X , P1124X ,
P2121X , P2122X , P2123X , P2124X ,
P3121X , P3122X , P3123X , P3124X ,
P4121X , P4122X , P4123X , P4124X

PV
C,3 P1211X , P1212X , P1213X , P1214X P1111X , P1112X , P1113X , P1114X P1211X , P1212X , P1213X , P1214X ,

P2211X , P2212X , P2213X , P2214X ,
P3211X , P3212X , P3213X , P3214X ,
P4211X , P4212X , P4213X , P4214X

P1211X , P1212X , P1213X , P1214X ,
P2211X , P2212X , P2213X , P2214X ,
P3211X , P3212X , P3213X , P3214X ,
P4211X , P4212X , P4213X , P4214X

PV
C,4 P12211 P1121X , P1122X , P1123X , P1124X P1223X , P2223X , P3223X , P4223X P4221X , P4222X , P4223X , P4224X

PV
C,5 P12212 P1211X , P1212X , P1213X , P1214X P1224X , P2224X , P3224X , P4224X P3221X , P3222X , P3223X , P3224X

PV
C,6 P1222X P1223X P4221X , P4222X P1223X , P2223X

PV
C,7 P1223X , P1224X P1224X P3221X , P3222X P1224X , P2224X

PV
C,8 P2111X , P2112X , P2113X , P2114X P12211 P1222X P1222X

PV
C,9 P2121X , P2122X , P2123X , P2124X P12212 P2222X P2222X

PV
C,10 P2211X , P2212X , P2213X , P2214X P1222X P12211 P12211

PV
C,11 P22211 P2111X , P2112X , P2113X , P2114X P12212 P12212

PV
C,12 P22212 P2121X , P2122X , P2123X , P2124X P22211 P22211

PV
C,13 P2222X P2211X , P2212X , P2213X , P2214X P22212 P22212

PV
C,14 P2223X , P2224X P2223X n/a n/a

PV
C,15 P1111X , P1112X , P1113X , P1114X P2224X n/a n/a

PV
C,16 n/a P22211 n/a n/a

PV
C,17 n/a P22212 n/a n/a

PV
C,18 n/a P2222X n/a n/a

aNote: X can be either ‘1’ or ‘2’.

Table 2: Reusability of test cases from V0 to V1 based on their S-C/DC partitions (%)
PV1

C,1 PV1
C,2 PV1

C,3 PV1
C,4 PV1

C,5 PV1
C,6 PV1

C,7 PV1
C,8 PV1

C,9 PV1
C,10 PV1

C,11 PV1
C,12 PV1

C,13 PV1
C,14 PV1

C,15 PV1
C,16 PV1

C,17 PV1
C,18

PV0
C,1 50 50

PV0
C,2 100

PV0
C,3 100

PV0
C,4 100

PV0
C,5 100

PV0
C,6 100

PV0
C,7 50 50

PV0
C,8 100

PV0
C,9 100

PV0
C,10 100

PV0
C,11 100

PV0
C,12 100

PV0
C,13 100

PV0
C,14 50 50

PV0
C,15 100

Reusability 50 50 100 100 100 50 50 100 100 100 100 100 100 50 50 100 100 100
Total 50 50 100 100 100 50 50 100 100 100 100 100 100 50 50 100 100 100

267267

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on August 12,2010 at 07:34:29 UTC from IEEE Xplore.  Restrictions apply. 



Table 3: Reusability of test case sets – S-B partition (%)
V0 V1 V2 V3

Analysis Experiment Analysis Experiment Analysis Experiment Analysis Experiment
V0 n/a 100 100.0 16.7 – 100 15.5 – 100.0 25 – 100 25.0 – 100.0
V1 100 100.0 n/a 16.7 – 100 16.4 – 100.0 25 – 100 24.8 – 100.0
V2 33.3 – 100 31.1 – 100.0 33.3 – 100 31.1 – 100.0 n/a 66.7 – 100 65.6 – 100.0
V3 33.3 – 100 32.2 – 100.0 33.3 – 100 30.6 – 100.0 66.7 – 100 63.9 – 100.0 n/a

Table 4: Reusability of test case sets – S-C/DC partition (%)
V0 V1 V2 V3

Analysis Experiment Analysis Experiment Analysis Experiment Analysis Experiment
V0 n/a 50 – 100 46.0 – 100.0 4.17 – 100 5.4 – 100.0 12.5 – 100 12.5 – 100.0
V1 100 84.0 – 100.0 n/a 12.5 – 100 11.0 – 100.0 25 – 100 22.3 – 100.0
V2 25 – 100 20.7 – 100.0 25 – 100 20.2 – 100.0 n/a 50 – 100 47.7 – 100.0
V3 25 – 100 20.6 – 100.0 25 – 100 19.2 – 100.0 50 – 100 49.2 – 100.0 n/a

Table 5: Reusability of test case sets – S-MC/DC partition (%)
V0 V1 V2 V3

Analysis Experiment Analysis Experiment Analysis Experiment Analysis Experiment
V0 n/a 50 – 100 47.2 – 100.0 4.17 – 100 5.5 – 100.0 12.5 – 100 11.0 – 100.0
V1 100 86.2 – 100.0 n/a 12.5 – 100 11.7 – 100.0 25 – 100 23.7 – 100.0
V2 25 – 100 21.5 – 100.0 25 – 100 20.6 – 100.0 n/a 50 – 100 50.5 – 100.0
V3 25 – 100 21.2 – 100.0 25 – 100 21.5 – 100.0 50 – 100 50.2 – 100.0 n/a

4.3. Evaluating Test Case Reusability
The S-C/DC partition can be used to evaluate test case

reusability. For example, when we evaluate the reusability
of test cases collected from V0 to test V1 using the C/DC
criteria, we need to consider the S-C/DC partition of
both versions. Based on the overlapping of elements in
these S-C/DC partitions, we can calculate the percentage
of test cases from one subdomain that satisfy the other
subdomain. Table 2 gives these percentages which indicate
the reusability of test cases collected from elements of
S-C/DC partition of V0 for testing V1 with C/DC critera.
For example, from Table 1, test cases from PV0

C,7 belong to
two groups, namely P1223X and P1224X , and these test cases
can satisfy either PV1

C,6 (from P1223X ) or PV1
C,7 (from P1224X ).

Hence, the chances of these test cases satisfying PV1
C,6 is

50%. Moreover, the percentage ranges from 50% – 100%.
It should be noted that such an estimate is coarse. For more
accurate results, we need to know the relative sizes of the
related partitions but this is a very time consuming process.
Tables 3–5 show the analytical results of the percentages
for every pair of V0, V1, V2 and V3.

4.4. Experimental Result
In order to verify the analysis performed as discussed

in Section 4.3, we perform an experiment to collect the
test case reusability information. Our experiment uses

four different versions of FocalLength, namely V0, V1,
V2 and V3, and three coverage-based partitions, namely
S-B, S-C/DC and S-MC/DC partitions. For a particular
version (say, V0), we randomly generate 1000 test sets
based on a particular coverage-based partition (say, S-B
partition). We then run these 1000 test sets on the other
three versions, recording the paths that are exercised by
the test sets and check whether the test sets satisfy the same
coverage criteria.

Tables 3–5 also show the experimental results for BC,
C/DC and MC/DC critieria. For example, from Table 4,
the percentage of test cases generated from the S-C/DC
partition of V0 that can be reused for testing V1 ranges from
46.0% to 100.0%.

4.5. Reused by Refining a Partition
As the reusability of test cases in Tables 3–5 is not

always 100.0%, we propose the following approach to
further refine the partitions for enhancing the reusability.
Let us illustrate our approach using the situation of
generating S-C/DC partition from V0 to test V1. From
Table 1, test cases from PV0

C,7 (P1223X and P1224X ) satisfy
either PV1

C,6 (P1223X ) or PV1
C,7 (P1224X ). Hence, we can further

refine PV0
C,7 into two subdomains, PV0

C,7−1 and PV0
C,7−2, that

contain P1223X and P1224X , respectively. As a result, if we
select one test case from each of these two newly created

268268

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on August 12,2010 at 07:34:29 UTC from IEEE Xplore.  Restrictions apply. 



Table 6: Refining existing S-C/DC partition of V0 to test V1
Before Refinement After Refinement

Existing Partition Entries of specification-based partition New Partition
PV0

C,1 P3111X , P3112X , P3113X , P3114X ,
P3121X , P3122X , P3123X , P3124X ,
P3211X , P3212X , P3213X , P3214X ,
P3221X , P3222X , P3223X , P3224X ,

P3111X , P3112X , P3113X , P3114X ,
P3121X , P3122X , P3123X , P3124X ,
P3211X , P3212X , P3213X , P3214X ,
P3221X , P3222X , P3223X , P3224X

PV0
C,1−1

P4111X , P4112X , P4113X , P4114X ,
P4121X , P4122X , P4123X , P4124X ,
P4211X , P4212X , P4213X , P4214X ,
P4221X , P4222X , P4223X , P4224X

P4111X , P4112X , P4113X , P4114X ,
P4121X , P4122X , P4123X , P4124X ,
P4211X , P4212X , P4213X , P4214X ,
P4221X , P4222X , P4223X , P4224X

PV0
C,1−2

PV0
C,7 P1223X , P1224X P1223X PV0

C,7−1
P1224X PV0

C,7−2
PV0

C,14 P2223X , P2224X P2223X PV0
C,14−1

P2224X PV0
C,14−2

subdomains to test V1, both PV1
C,6 and PV1

C,7 can be satisfied.
The refinement is based on the relations between S-C/DC
partitions of V0 and V1. Table 6 shows the details of the
refinement. After the refinement, if we generate additional
test cases from the newly created subdomains that are not
covered by the original test set, the newly created test set
satisfies the C/DC criterion of V1. Obviously, this will
incur additional costs. However, our approach provides
an analytical way to achieve maximum reusability of the
already generated test cases.

5. Conclusion
Tester needs to evaluate what test cases can be reused

and how these test cases are reused at the beginning
of testing. The test case reusability is affected by
the modified program and the coverage criteria used in
testing. Partitioning of domain testing focuses on input
domain to generate test cases and evaluate their reusability
among programs with similar specifications on one hand,
while maximizing the reuse of existing test cases. Both
input domains of the original and modified programs are
partitioned with a test coverage criterion. Reusability
analysis is based on the overlapping elements of the
partitions between the original and modified programs. To
achieve 100% coverage and maximize test case reusability,
testers may need to further refine existing criterion-based
partitions to select more test cases. In this paper, we
propose an approach to perform such task and illustrate
our idea using a case study.

References
[1] A. Abdurazik, P. Ammann, W. Ding, J. Offutt. Evaluation of

three specification-based test criteria. In Proceedings of 6th

IEEE International Conference on Engineering of Complex
Computer Systems, pages 55–68, 2000

[2] J.J. Chilenski and S.P. Miller. Applicability of modified
condition/decision coverage to software testing. Software
Engineering Journal, 9(5):193–200, 1994.

[3] M. Hutchins, H. Foster, T. Goradia, T. Ostrand. Exper-
iments on the effectiveness of dataflow and controlflow-
based test adequacy criteria. In Proceedings of the 16th
ICSE, pages 191–200, 1994.

[4] J. Knoop, O. Rüthing, B. Steffen. Lazy code motion. ACM
SIGPLAN’92 Notices, 27(7):224–234, 1992.

[5] W.C. Kreahing, D.B. Whalley, M.W. Bailley, X. Yuan, G.-
R. Uh, R. van Engelen. Branch elimination by condition
merging Software Practice and Experience, 35(1):51–74,
2005.

[6] F. Mueller and D.B. Whalley. Avoiding unconditional
jumps by code replication. In Proceedings of the ACM
SIGPLAN, pages 322–330, 1992.

[7] F. Mueller and D.B. Whalley. Avoiding conditional
branches by code replication. In Proceedings of the ACM
SIGPLAN, pages 56–66, 1995.

[8] G. Rothermel, M. J. Harrold. A safe, efficient regression
test selection technique. ACM Transactions on Software
Engineering and Methodology, 6(2):183–210, 1997.

[9] A. von Mayrhauser, R. Mraz, J. Walls, Domain based
testing: increasing test case reuse. In Proceedings of the
IEEE International Conference on Computer Design, pages
484–491, 1994.

[10] M. Yang, G.-R. Uh, D.B. Whalley. Efficient and effective
branch reordering using profile data. ACM Transaction
on Programming Languages and System, 24(6):667–696,
2002.

269269

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on August 12,2010 at 07:34:29 UTC from IEEE Xplore.  Restrictions apply. 


